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A B S T R A C T

Meyer et al (2019) recently proposed that the nutritional condition of white sharks is unaffected by cage diving
tourism. This conclusion was reached after analysing changes in the fatty acid profile of muscle samples col-
lected from sharks that had spent more time around cage diving and contrasting them to sharks relatively
unexposed to these activities. Here we want to caution on the interpretation of these results which do not fully
take into consideration the way energy metabolism functions in elasmobranchs. We provide some alternative
metabolic targets which could be retrieved from the field and would be more relevant to estimate the potential
population consequences of tourism disturbances on white sharks.

Numerous studies over the past 30 years have shown that interac-
tions between wildlife and tourism activities can perturb the activities
of the targeted animals (Green & Higginbottom, 2000). Yet, it has been
difficult to place these perturbations in a conservation context because
of the challenge to understand how repeated behavioural and physio-
logical disruptions can affect the demographic contributions of the af-
fected individuals (Pirotta et al., 2018).

Recent analytical advances have helped to tackle this inferential
challenge (Pirotta et al., 2018). The impact of tourism and recreation is
broader than once thought as we have more than 2350 animal species
for which tourism and recreational interactions are listed as a con-
servation threat on the IUCN Red List (Threat 6.1). Understanding the
conservation relevance of repeated, short-term tourism impacts on in-
dividual animals hinges on incorporating them in condition-mediated
population models (Christiansen & Lusseau, 2015). It is therefore im-
portant to understand how exposure to perturbations can affect the
condition of individuals and therefore their demographic contributions
(through survival and/or reproduction). Studies like Meyer,
Pethybridge, Beckmann, Bruce, and Huveneers (2019) (Meyer et al.,
2019) are therefore crucial both to understand tourism conservation
impacts and to define appropriate management plans.

The condition of an individual is often estimated in the conservation
ecology literature using a proxy of the volume of its fat depots with the
assumption that the more fat an individual has, the better its condition
will be (New et al., 2014). However, if we want to estimate ‘condition’
in an ecologically-relevant manner, that is as a measure of how much an
individual will be able to contribute to population growth rate, then we

need to carefully understand how energy metabolism functions in the
species of interest. More specifically, we cannot assume that adipose
biology functions in all species in the same manner as model organisms
when nutrient levels are perturbed. Subcutaneous and muscle fat den-
sity is indeed a useful measure of ecologically-relevant condition in
many terrestrial mammals as well as teleost fishes (Tocher, 2003).
However, in elasmobranchs, tissues and biological functions interact
differently to maintain energetic homeostasis.

While indeed it may be possible to estimate dietary shift from lipid
profile in elasmobranch muscles (Semeniuk, Speers-Roesch, & Rothley,
2007), there is still more work needed to understand the temporal scale
at which fatty acid (FA) profile can be interpreted and how preferential
accumulation in different tissues may mean that tissue-specific predator
FA profile can differ from its prey consumption (Mohan, Mohan,
Connelly, Walther, & McClelland, 2016; Nielsen, Clare, Hayden, Brett,
& Kratina, 2017; Pethybridge, Parrish, Bruce, Young, & Nichols, 2014).
However, it is unlikely that we can infer nutritional stress from the
same tissue.

Elasmobranchs rely on their liver for lipid storage. Indeed,
Pethybridge et al. (2014) recommend using liver biopsies over muscle
biopsies for dietary inferences. Using their 2014 study, where both
muscle and liver of white sharks were sampled, we can show that there
is little concordance between the muscle and liver lipid profile (Fig. 1).

Importantly, the question becomes whether measures of lipid me-
tabolism are ecologically-relevant measures of condition for elasmo-
branchs. In addition to the fact that extrahepatic lipid metabolism is
limited in these species, ketone bodies play a much greater role in
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energy metabolism than they do in mammals or teleost fishes
(Ballantyne, 1997; Speers-Roesch & Treberg, 2010). Indeed, it is an-
ticipated that elasmobranchs rely on ketone bodies and amino acids as
oxidative fuels in muscle tissue (Speers-Roesch & Treberg, 2010; Wood,
Walsh, Kajimura, McClelland, & Chew, 2010). Studies comparing fasted
to satiated sharks can help us elucidate the more appropriate energy
metabolism pathways to detect nutritional stress. These studies show
that amino acid and nitrogen metabolism(s) are most affected and
muscle protein stores changed most in response to fasting (Wood et al.,
2010).

The question remains opened whether cage diving, and its asso-
ciated baiting, influence the foraging ecology of white sharks to a point
that it impacts their condition and therefore their ability to survive and
reproduce. Observational studies indicate that significant foraging dis-
ruption may be unlikely but the integrative impact of multiple non-
lethal effects of tourism interactions on shark physiological ecology is
unknown (Gallagher et al., 2015). More broadly, elasmobranch tourism
can affect habitat use and foraging ecology to a point that warrant
concerns for the conservation of the targeted species (Gallagher et al.,
2015). The approach used by Meyer et al. (2019) will help to estimate
the potential population consequences of tourism disturbances. How-
ever, it would be useful to focus on muscle amino acid and ketone
bodies metabolomics profile and plasma markers of the glutamate-
glutamine-urea pathway to address this issue and not lipid metabolism.

More broadly, much of our understanding of the physiology of
‘condition’ has been driven by the study of a small subset of species
which do not represent the diversity of energy metabolism(s) present in
species likely to suffer from non-lethal, condition-mediated conserva-
tion threats. This should be the focus of attention to better understand
the population consequences of disturbances (Mandelman, 2012;
National Academies of Sciences and Medicine, 2017).
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